The symmetry group of the tiling is 3*3 (p31m) | 37 |
The symmetry group of the tiling is 2*22 (cmm) | 295 |
The symmetry group of the tiling is *632 (p6m) | 535 |
The symmetry group of the tiling is *10.0• (d10.0) | 13 |
The symmetry group of the tiling is *442 (p4m) | 1050 |
The symmetry group of the tiling is *8.0• (d8.0) | 19 |
The symmetry group of the tiling is *2222 (pmm) | 195 |
The symmetry group of the tiling is *12.0• (d12.0) | 5 |
The symmetry group of the tiling is *5.0• (d5.0) | 13 |
The symmetry group of the tiling is *6.0• (d6.0) | 6 |
The symmetry group of the tiling is *333 (p3m1) | 21 |
The symmetry group of the tiling is 6.5• (c6.5) | 20 |
The symmetry group of the tiling is *4.0• (d4.0) | 16 |
The symmetry group of the tiling is 442 (p4) | 126 |
The symmetry group of the tiling is 22X (pgg) | 17 |
The symmetry group of the tiling is 4*2 (p4g) | 145 |
The symmetry group of the tiling is ** (pm) | 22 |
The symmetry group of the tiling is *X (cm) | 13 |
The symmetry group of the tiling is 632 (p6) | 104 |
The symmetry group of the tiling is 22* (pmg) | 31 |
The symmetry group of the tiling is 333 (p3) | 10 |
The symmetry group of the tiling is *2.0• (d2.0) | 14 |
The symmetry group of the tiling is 4.5• (c4.5) | 32 |
The symmetry group of the tiling is 2222 (p2) | 34 |
The symmetry group of the tiling is not symmetric and hence is not a repeat pattern | 85 |
The symmetry group of the tiling is 2.5• (c2.5) | 34 |
The symmetry group of the tiling is 5.5• (c5.5) | 5 |
The symmetry group of the tiling is 3.5• (c3.5) | 3 |
The symmetry group of the tiling is XX (pg) | 18 |
The symmetry group of the tiling is O (p1) | 7 |
The symmetry group of the tiling is 7.5• (c7.5) | 1 |
The symmetry group of the tiling is 12.5• (c12.5) | 1 |
The symmetry group of the tiling is *22∞ (p2mm) | 6 |
The symmetry group of the tiling is *3.0• (d3.0) | 1 |
The symmetry group of the tiling is *16.0• (d16.0) | 2 |
The symmetry group of the tiling is 2*∞ (pmg) | 3 |
The symmetry group of the tiling is *1.0• (d1.0) | 1 |
Property | Number |
Colouring could not be determined | 285 |
Cannot be coloured with two colours | 462 |
Can be coloured with two colours | 864 |
Can be coloured with two colours (straight cross-overs) | 1329 |
Polygon | Number of Tilings | Total |
equilateral triangle | 256 | 728 |
square | 789 | 1940 |
regular pentagon | 269 | 3414 |
regular hexagon | 330 | 516 |
regular heptagon | 29 | 97 |
regular octagon | 226 | 293 |
regular enneagon | 8 | 8 |
regular decagon | 6 | 10 |
12-gon | 13 | 13 |
16-gon | 2 | 2 |
18-gon | 1 | 1 |
24-gon | 1 | 1 |
Points | Vertex angle | Tiling count | Total |
2 | (undef) | 2 | 11 |
2 | 0.0 | 2 | 2 |
2 | 15.0 | 1 | 1 |
2 | 18.0 | 4 | 6 |
2 | 22.5 | 4 | 8 |
2 | 25.7 | 12 | 30 |
2 | 30.0 | 21 | 37 |
2 | 34.3 | 1 | 1 |
2 | 36.0 | 11 | 23 |
2 | 40.0 | 1 | 1 |
2 | 45.0 | 201 | 964 |
2 | 48.0 | 1 | 1 |
2 | 50.0 | 2 | 2 |
2 | 51.4 | 4 | 8 |
2 | 52.5 | 1 | 2 |
2 | 53.1 | 1 | 1 |
2 | 55.5 | 1 | 1 |
2 | 58.5 | 1 | 1 |
2 | 60.0 | 183 | 297 |
2 | 63.0 | 2 | 2 |
2 | 66.0 | 1 | 1 |
2 | 67.5 | 2 | 8 |
2 | 70.0 | 2 | 2 |
2 | 70.7 | 1 | 7 |
2 | 72.0 | 112 | 1075 |
2 | 73.1 | 2 | 16 |
2 | 75.0 | 9 | 15 |
2 | 77.1 | 10 | 18 |
2 | 78.0 | 2 | 2 |
2 | 80.0 | 6 | 7 |
2 | 82.5 | 1 | 1 |
2 | 84.0 | 1 | 1 |
2 | 87.4 | 1 | 1 |
2 | 99.2 | 1 | 1 |
3 | 15.0 | 7 | 8 |
3 | 18.0 | 4 | 4 |
3 | 20.0 | 3 | 3 |
3 | 22.0 | 3 | 4 |
3 | 25.7 | 1 | 1 |
3 | 30.0 | 27 | 34 |
3 | 34.3 | 5 | 6 |
3 | 37.5 | 1 | 1 |
3 | 40.0 | 3 | 3 |
3 | 45.0 | 4 | 4 |
3 | 60.0 | 10 | 10 |
3 | 80.0 | 1 | 1 |
3 | 90.0 | 39 | 67 |
3 | 100.0 | 1 | 1 |
3 | 102.0 | 1 | 1 |
3 | 105.0 | 12 | 12 |
3 | 108.0 | 1 | 1 |
3 | 112.5 | 3 | 3 |
3 | 120.0 | 1 | 1 |
3 | 150.0 | 3 | 4 |
3 | 165.0 | 1 | 1 |
4 | 0.0 | 1 | 1 |
4 | 18.0 | 2 | 3 |
4 | 22.0 | 2 | 3 |
4 | 24.0 | 1 | 1 |
4 | 30.0 | 13 | 15 |
4 | 31.5 | 1 | 1 |
4 | 36.0 | 1 | 1 |
4 | 40.0 | 1 | 1 |
4 | 45.0 | 82 | 104 |
4 | 48.0 | 1 | 1 |
4 | 51.4 | 1 | 1 |
4 | 52.5 | 1 | 1 |
4 | 54.0 | 5 | 5 |
4 | 56.3 | 1 | 1 |
4 | 60.0 | 42 | 44 |
4 | 63.0 | 1 | 1 |
4 | 64.3 | 5 | 6 |
4 | 65.0 | 1 | 1 |
4 | 67.5 | 7 | 7 |
4 | 68.0 | 1 | 1 |
4 | 70.0 | 2 | 2 |
4 | 75.0 | 3 | 3 |
4 | 90.0 | 4 | 4 |
4 | 98.0 | 1 | 1 |
4 | 120.0 | 29 | 32 |
4 | 126.0 | 3 | 3 |
4 | 135.0 | 10 | 10 |
5 | (undef) | 1 | 1 |
5 | 36.0 | 69 | 364 |
5 | 48.0 | 1 | 1 |
5 | 72.0 | 29 | 63 |
5 | 108.0 | 2 | 2 |
6 | (undef) | 1 | 1 |
6 | 0.0 | 2 | 2 |
6 | 15.0 | 1 | 1 |
6 | 18.0 | 1 | 1 |
6 | 20.0 | 1 | 1 |
6 | 22.0 | 1 | 3 |
6 | 30.0 | 19 | 20 |
6 | 36.0 | 1 | 1 |
6 | 40.0 | 3 | 3 |
6 | 45.0 | 2 | 2 |
6 | 48.0 | 4 | 4 |
6 | 60.0 | 248 | 282 |
6 | 65.0 | 1 | 1 |
6 | 72.0 | 7 | 7 |
6 | 73.3 | 1 | 1 |
6 | 75.0 | 9 | 9 |
6 | 76.0 | 1 | 1 |
6 | 77.1 | 1 | 1 |
6 | 78.0 | 2 | 2 |
6 | 78.8 | 1 | 1 |
6 | 80.0 | 4 | 4 |
6 | 84.0 | 1 | 1 |
6 | 85.0 | 3 | 3 |
6 | 90.0 | 54 | 64 |
6 | 94.3 | 4 | 4 |
6 | 95.0 | 1 | 1 |
6 | 100.0 | 3 | 3 |
6 | 102.9 | 1 | 1 |
6 | 105.0 | 3 | 3 |
6 | 108.0 | 2 | 2 |
6 | 114.0 | 1 | 1 |
6 | 120.0 | 16 | 16 |
6 | 135.0 | 1 | 1 |
6 | 150.0 | 2 | 2 |
7 | (undef) | 3 | 4 |
7 | 0.0 | 12 | 12 |
7 | 77.1 | 12 | 14 |
7 | 92.6 | 1 | 2 |
7 | 102.9 | 2 | 2 |
8 | (undef) | 2 | 2 |
8 | 0.0 | 11 | 11 |
8 | 15.0 | 9 | 10 |
8 | 18.0 | 1 | 1 |
8 | 25.0 | 1 | 1 |
8 | 35.0 | 1 | 1 |
8 | 45.0 | 164 | 240 |
8 | 50.0 | 1 | 1 |
8 | 52.5 | 1 | 1 |
8 | 55.0 | 1 | 1 |
8 | 60.0 | 3 | 3 |
8 | 63.0 | 1 | 1 |
8 | 65.0 | 2 | 2 |
8 | 67.5 | 4 | 5 |
8 | 69.0 | 1 | 1 |
8 | 70.0 | 3 | 3 |
8 | 71.3 | 3 | 3 |
8 | 72.0 | 6 | 7 |
8 | 73.1 | 3 | 3 |
8 | 75.0 | 8 | 8 |
8 | 76.5 | 1 | 1 |
8 | 80.0 | 2 | 2 |
8 | 82.0 | 1 | 1 |
8 | 90.0 | 592 | 1576 |
8 | 100.0 | 2 | 4 |
8 | 105.0 | 9 | 9 |
8 | 108.0 | 2 | 2 |
8 | 109.3 | 1 | 1 |
8 | 111.0 | 1 | 1 |
8 | 112.5 | 8 | 8 |
8 | 115.0 | 1 | 1 |
8 | 117.0 | 1 | 1 |
8 | 120.0 | 5 | 5 |
8 | 121.5 | 1 | 1 |
8 | 135.0 | 3 | 3 |
9 | 0.0 | 7 | 7 |
9 | 20.0 | 3 | 3 |
9 | 30.0 | 1 | 1 |
9 | 32.0 | 1 | 1 |
9 | 40.0 | 5 | 5 |
9 | 70.0 | 3 | 3 |
9 | 72.0 | 1 | 1 |
9 | 72.5 | 2 | 2 |
9 | 80.0 | 14 | 14 |
9 | 92.0 | 1 | 1 |
9 | 100.0 | 2 | 2 |
9 | 105.0 | 1 | 1 |
9 | 110.0 | 3 | 3 |
9 | 120.0 | 1 | 1 |
10 | (undef) | 4 | 2 |
10 | 0.0 | 3 | 3 |
10 | 36.0 | 6 | 6 |
10 | 54.0 | 1 | 1 |
10 | 72.0 | 147 | 262 |
10 | 85.5 | 1 | 1 |
10 | 90.0 | 2 | 2 |
10 | 98.0 | 1 | 1 |
10 | 108.0 | 98 | 309 |
10 | 126.0 | 1 | 1 |
11 | (undef) | 1 | 1 |
11 | 0.0 | 4 | 4 |
11 | 70.0 | 1 | 1 |
12 | (undef) | 2 | 2 |
12 | 0.0 | 11 | 11 |
12 | 15.0 | 1 | 1 |
12 | 30.0 | 20 | 20 |
12 | 45.0 | 1 | 1 |
12 | 51.0 | 1 | 1 |
12 | 52.5 | 3 | 3 |
12 | 60.0 | 151 | 186 |
12 | 65.0 | 3 | 3 |
12 | 66.0 | 2 | 2 |
12 | 67.5 | 1 | 1 |
12 | 70.0 | 5 | 5 |
12 | 71.3 | 2 | 2 |
12 | 72.0 | 8 | 8 |
12 | 72.5 | 2 | 2 |
12 | 75.0 | 15 | 15 |
12 | 78.0 | 1 | 1 |
12 | 80.0 | 8 | 8 |
12 | 82.5 | 1 | 1 |
12 | 84.0 | 1 | 1 |
12 | 85.0 | 1 | 1 |
12 | 90.0 | 57 | 58 |
12 | 97.5 | 4 | 4 |
12 | 100.0 | 2 | 2 |
12 | 105.0 | 11 | 11 |
12 | 120.0 | 8 | 8 |
12 | 124.3 | 1 | 1 |
12 | 127.5 | 1 | 1 |
13 | 0.0 | 1 | 1 |
13 | 90.0 | 1 | 1 |
14 | 0.0 | 1 | 1 |
14 | 51.4 | 8 | 8 |
14 | 70.7 | 3 | 3 |
14 | 77.1 | 4 | 4 |
14 | 102.9 | 17 | 21 |
15 | 51.0 | 2 | 2 |
16 | 0.0 | 4 | 4 |
16 | 22.5 | 1 | 1 |
16 | 45.0 | 87 | 89 |
16 | 52.5 | 4 | 4 |
16 | 58.5 | 1 | 1 |
16 | 59.0 | 1 | 1 |
16 | 60.0 | 2 | 2 |
16 | 62.5 | 1 | 1 |
16 | 67.5 | 4 | 4 |
16 | 73.1 | 3 | 3 |
16 | 75.0 | 1 | 1 |
16 | 80.0 | 2 | 2 |
16 | 90.0 | 6 | 6 |
16 | 100.0 | 1 | 1 |
18 | 40.0 | 2 | 2 |
18 | 44.0 | 1 | 1 |
18 | 60.0 | 2 | 2 |
18 | 80.0 | 4 | 4 |
20 | (undef) | 2 | 2 |
20 | 0.0 | 1 | 1 |
20 | 36.0 | 7 | 7 |
20 | 54.0 | 1 | 1 |
20 | 60.0 | 1 | 1 |
24 | (undef) | 1 | 1 |
24 | 0.0 | 5 | 5 |
24 | 30.0 | 15 | 15 |
24 | 40.0 | 1 | 1 |
24 | 45.0 | 3 | 3 |
32 | 0.0 | 1 | 1 |
32 | 22.5 | 1 | 1 |
48 | 0.0 | 4 | 4 |
Angle | Number |
- | 112 |
0.38 | 1 |
0.50 | 7 |
1.00 | 7 |
1.07 | 1 |
1.25 | 9 |
1.50 | 8 |
1.67 | 1 |
1.88 | 3 |
2.00 | 11 |
2.14 | 1 |
2.50 | 28 |
2.81 | 3 |
3.00 | 11 |
3.21 | 4 |
3.75 | 17 |
4.00 | 1 |
4.29 | 4 |
4.50 | 11 |
5.00 | 40 |
5.63 | 1 |
6.00 | 14 |
6.43 | 2 |
7.50 | 100 |
8.57 | 4 |
9.00 | 14 |
10.00 | 15 |
11.25 | 21 |
12.00 | 12 |
12.86 | 7 |
15.00 | 265 |
18.00 | 37 |
20.00 | 20 |
22.50 | 285 |
25.71 | 35 |
30.00 | 358 |
36.00 | 298 |
45.00 | 678 |
60.00 | 217 |
90.00 | 260 |
120.00 | 17 |
Property | Number |
False | 2725 |
True | 184 |
Finite interlaces | Infinite interlaces | Total |
-1 | 0 | 79 |
0 | 0 | 1520 |
0 | 1 | 238 |
0 | 2 | 175 |
0 | 3 | 45 |
0 | 4 | 25 |
0 | 5 | 5 |
0 | 6 | 5 |
0 | 8 | 3 |
1 | 0 | 138 |
1 | 1 | 163 |
1 | 2 | 60 |
1 | 3 | 8 |
1 | 4 | 1 |
1 | 5 | 3 |
1 | 7 | 1 |
2 | 0 | 135 |
2 | 1 | 73 |
2 | 2 | 16 |
2 | 3 | 9 |
2 | 4 | 2 |
2 | 5 | 1 |
3 | 0 | 72 |
3 | 1 | 23 |
3 | 2 | 5 |
4 | 0 | 25 |
4 | 1 | 18 |
4 | 2 | 10 |
4 | 3 | 2 |
4 | 4 | 1 |
5 | 0 | 17 |
5 | 1 | 11 |
5 | 2 | 2 |
5 | 3 | 1 |
5 | 9 | 1 |
6 | 0 | 10 |
6 | 1 | 7 |
7 | 0 | 9 |
7 | 1 | 2 |
7 | 4 | 1 |
8 | 0 | 6 |
8 | 1 | 1 |
8 | 2 | 2 |
9 | 0 | 3 |
10 | 1 | 1 |
12 | 0 | 1 |
12 | 2 | 1 |
13 | 0 | 1 |
15 | 3 | 2 |
Reflective tiles | Reflective pairs | No mirror image | Number |
0 | 0 | 0 | 243 |
0 | 0 | 1 | 156 |
0 | 0 | 2 | 59 |
0 | 0 | 3 | 11 |
0 | 0 | 4 | 2 |
0 | 0 | 5 | 3 |
0 | 0 | 6 | 1 |
0 | 0 | 7 | 2 |
0 | 0 | 8 | 35 |
0 | 0 | 9 | 2 |
0 | 0 | 11 | 2 |
0 | 1 | 0 | 95 |
1 | 0 | 0 | 431 |
1 | 0 | 1 | 23 |
1 | 0 | 2 | 2 |
1 | 0 | 3 | 1 |
1 | 0 | 4 | 3 |
1 | 0 | 6 | 1 |
1 | 1 | 0 | 43 |
1 | 2 | 0 | 2 |
1 | 3 | 0 | 3 |
2 | 0 | 0 | 283 |
2 | 0 | 1 | 5 |
2 | 0 | 2 | 3 |
2 | 0 | 3 | 1 |
2 | 0 | 6 | 1 |
2 | 1 | 0 | 27 |
2 | 1 | 1 | 1 |
2 | 2 | 0 | 4 |
2 | 3 | 0 | 1 |
2 | 4 | 0 | 2 |
2 | 5 | 0 | 2 |
2 | 6 | 0 | 1 |
3 | 0 | 0 | 333 |
3 | 0 | 1 | 2 |
3 | 0 | 2 | 3 |
3 | 0 | 5 | 2 |
3 | 1 | 0 | 29 |
3 | 2 | 0 | 3 |
3 | 3 | 0 | 3 |
3 | 4 | 0 | 1 |
3 | 5 | 0 | 2 |
4 | 0 | 0 | 227 |
4 | 0 | 5 | 3 |
4 | 1 | 0 | 19 |
4 | 2 | 0 | 7 |
4 | 3 | 0 | 2 |
4 | 6 | 0 | 1 |
5 | 0 | 0 | 175 |
5 | 0 | 2 | 3 |
5 | 1 | 0 | 27 |
5 | 2 | 0 | 3 |
5 | 3 | 0 | 2 |
6 | 0 | 0 | 107 |
6 | 0 | 2 | 1 |
6 | 1 | 0 | 28 |
6 | 2 | 0 | 4 |
6 | 4 | 0 | 1 |
7 | 0 | 0 | 92 |
7 | 0 | 2 | 1 |
7 | 1 | 0 | 22 |
7 | 2 | 0 | 3 |
7 | 3 | 0 | 1 |
7 | 4 | 0 | 1 |
8 | 0 | 0 | 59 |
8 | 1 | 0 | 16 |
8 | 2 | 0 | 7 |
8 | 3 | 0 | 3 |
9 | 0 | 0 | 41 |
9 | 0 | 2 | 1 |
9 | 1 | 0 | 14 |
9 | 2 | 0 | 4 |
9 | 5 | 0 | 1 |
10 | 0 | 0 | 34 |
10 | 1 | 0 | 7 |
10 | 2 | 0 | 6 |
10 | 3 | 0 | 1 |
10 | 4 | 0 | 3 |
11 | 0 | 0 | 21 |
11 | 1 | 0 | 9 |
11 | 2 | 0 | 4 |
12 | 0 | 0 | 15 |
12 | 1 | 0 | 9 |
12 | 2 | 0 | 5 |
12 | 2 | 2 | 1 |
12 | 3 | 0 | 1 |
12 | 4 | 0 | 1 |
13 | 0 | 0 | 9 |
13 | 1 | 0 | 4 |
13 | 2 | 0 | 6 |
13 | 3 | 0 | 1 |
13 | 4 | 0 | 1 |
14 | 0 | 0 | 8 |
14 | 1 | 0 | 6 |
14 | 2 | 0 | 7 |
14 | 3 | 2 | 1 |
15 | 0 | 0 | 3 |
15 | 1 | 0 | 7 |
15 | 2 | 0 | 5 |
15 | 4 | 0 | 3 |
16 | 0 | 0 | 5 |
16 | 0 | 22 | 1 |
16 | 1 | 0 | 4 |
16 | 2 | 0 | 3 |
16 | 3 | 0 | 1 |
17 | 0 | 0 | 4 |
17 | 1 | 0 | 1 |
17 | 2 | 0 | 3 |
17 | 3 | 0 | 4 |
18 | 0 | 0 | 4 |
18 | 1 | 0 | 4 |
18 | 3 | 0 | 1 |
18 | 8 | 0 | 1 |
19 | 1 | 0 | 3 |
19 | 2 | 0 | 2 |
20 | 1 | 0 | 1 |
20 | 3 | 0 | 1 |
21 | 1 | 0 | 1 |
21 | 2 | 0 | 1 |
22 | 0 | 13 | 1 |
22 | 3 | 0 | 1 |
22 | 4 | 0 | 1 |
22 | 5 | 0 | 1 |
23 | 0 | 0 | 1 |
23 | 1 | 0 | 1 |
23 | 4 | 0 | 2 |
24 | 7 | 0 | 1 |
26 | 3 | 0 | 1 |
26 | 4 | 0 | 1 |
26 | 5 | 0 | 1 |
Property | Number |
False | 2316 |
True | 615 |
Publication | Number |
abas | 176 |
ajlouni | 3 |
akber | 17 |
arik | 1 |
aslanapa | 25 |
backhouse | 7 |
bain | 5 |
bakirer | 1 |
balmelle | 185 |
barry | 2 |
berchem | 1 |
betsch | 1 |
betts | 1 |
blair | 3 |
blair2 | 1 |
bonner | 239 |
booth | 8 |
bour0 | 7 |
bourgoin | 179 |
briggs | 12 |
broug | 14 |
broug2 | 59 |
bulut | 24 |
burckhard2 | 1 |
burckhardt | 6 |
cahier | 66 |
calvert | 16 |
calvert2 | 1 |
carey | 5 |
castera | 47 |
clevenot | 14 |
collin | 38 |
copple | 1 |
creswell | 16 |
critchlow | 24 |
cromwell1 | 1 |
cromwell2 | 2 |
cromwell3 | 1 |
cromwell4 | 30 |
d-avennes | 43 |
dawes | 173 |
day | 1 |
degeorge2 | 48 |
denny | 2 |
dury | 3 |
dussaud | 1 |
dye | 122 |
ekhtiar | 1 |
elsaid | 49 |
elsaid2 | 4 |
erdmann | 14 |
escher | 2 |
etting | 4 |
ex1995 | 7 |
fernandez | 16 |
field1 | 10 |
field2 | 14 |
field4 | 26 |
frettloeh | 19 |
gailiunas | 9 |
gands | 114 |
gands2 | 2 |
gink | 4 |
glassner | 1 |
gluck | 1 |
golomb1 | 29 |
golomb2 | 3 |
golombek | 1 |
gomez | 1 |
grafton | 28 |
grube | 1 |
guy | 9 |
hankin1 | 2 |
hankin2 | 1 |
hattstein | 3 |
hedgecoe | 1 |
herzfeld1 | 1 |
herzfeld2 | 3 |
herzfeld3 | 1 |
herzfeld4 | 1 |
hessemer | 55 |
hill | 51 |
hill2 | 10 |
hirsch | 2 |
hrbas | 3 |
humbert | 5 |
hutt | 2 |
iran | 172 |
james | 4 |
jones | 50 |
jones2 | 2 |
klaassen | 1 |
klarner | 3 |
knobloch | 1 |
landau | 2 |
lee | 14 |
lings | 1 |
lowry | 1 |
makov | 4 |
marcais | 1 |
marshall | 17 |
martin | 1 |
maussion | 1 |
meinecke | 1 |
migeon | 2 |
mols | 1 |
muller | 1 |
murphy | 5 |
myers | 47 |
myers2 | 43 |
neal | 7 |
necipoglu | 28 |
ogel | 4 |
okane | 1 |
okane2 | 45 |
orazi | 5 |
orton | 1 |
otto | 1 |
paccard | 92 |
pajares | 25 |
pavon | 10 |
pc | 842 |
pickett | 1 |
pope | 23 |
pope2 | 1 |
pugatch | 2 |
racinet | 18 |
ransome | 2 |
ray | 13 |
reid | 4 |
rempel | 21 |
reuther | 1 |
rice | 1 |
riefstahl | 1 |
rigby1 | 55 |
rogers | 2 |
sakkal | 27 |
sakkal2 | 23 |
sarre | 12 |
scerrato | 6 |
schatt1 | 2 |
schneider | 1 |
seherr | 17 |
shafai | 72 |
siculo | 1 |
singer | 9 |
smith1 | 1 |
smith2 | 98 |
sourdel | 3 |
stevens | 23 |
stierlin | 3 |
stierlin2 | 1 |
stock | 6 |
stronge | 20 |
sutton | 7 |
useinov | 3 |
vami | 142 |
viollet | 1 |
volait | 7 |
volwah | 2 |
wade | 58 |
wadei | 675 |
wahhab | 36 |
wich2 | 122 |
wich3 | 2 |
wilber | 4 |
wild | 1 |
wilkinson | 7 |
williams | 1 |
wilson | 12 |
wurfel | 1 |
ww | 179 |
Version | Date | Tilings | Comment |
54 | 2023-10-24 | 2941 | See. |
53 | 2023-01-17 | 2904 | See. |
52 | 2021-08-15 | 2862 | See. |
51 | 2020-11-23 | 2857 | See. |
50 | 2020-08-01 | 2840 | See. |
49 | 2019-08-01 | 2811 | See. |
48 | 2019-03-15 | 2812 | See. |
47 | 2018-09-29 | 2767 | See. |
46 | 2018-07-22 | 2717 | See. |
45 | 2018-05-15 | 2714 | See. |
44 | 2017-12-28 | 2690 | See. |
43 | 2017-09-10 | 2670 | See. |
42 | 2016-09-27 | 2620 | See. |
41 | 2016-05-14 | 2603 | See. |
40 | 2016-02-01 | 2566 | See. |
39 | 2015-11-28 | 2548 | 21 new patterns |
38 | 2015-09-04 | 2527 | Negative searching |
37 | 2015-04-20 | 2517 | New search facility |
36 | 2014-11-29 | 2510 | Interlace counts |
35 | 2014-08-03 | 2505 | James William Wild |
34 | 2014-06-06 | 2429 | Chelates |
33 | 2014-03-08 | 2440 | Variant patterns |
32 | 2013-12-11 | 2389 | Kites and Darts |
31 | 2013-10-08 | 2336 | More patterns from Iran |
30 | 2013-08-08 | 2304 | All patterns have a PDF version |
29 | 2013-05-01 | 2304 | Patterns from Nick Crossling added |
28 | 2013-02-19 | 2278 | Patterns from Alberto Leon added |
27 | 2012-12-16 | 2235 | Patterns in Islamic style added from Tony Lee |
26 | 2012-10-16 | 2201 | More Roman mosaic patterns added |
25 | 2012-08-21 | 2151 | Roman mosaic patterns added |
24 | 2012-05-28 | 2020 | More paterns from the Alhambra added |
23 | 2012-02-11 | 1983 | More pattern added from David Wade's photos |
22 | 2011-12-17 | 1941 | More patterns from Borgoin added |
21 | 2011-09-19 | 1908 | Patterns with borders added |
20 | 2011-06-21 | 1868 | Example of internal documentation provided |
19 | 2011-02-28 | 1829 | 25 patterns from Tony Lee |
18 | 2010-11-15 | 1771 | More paterns from the Alhambra added |
17 | 2010-08-14 | 1727 | Large JPG display added for some patterns |
16 | 2010-05-07 | 1695 | Some V and A material added |
15 | 2010-01-29 | 1646 | Entry page display added |
14 | 2009-12-09 | 1601 | Tilings of a square with similar triangles added |
13 | 2009-10-09 | 1563 | Two-uniform tilings added |
12 | 2009-06-20 | 1499 | Patterns from Borgoin added |
11 | 2009-03-05 | 1442 | Patterns on the Alhambra added |
10 | 2009-01-03 | 1403 | Random display of 20 patterns added |
9 | 2008-11-16 | 1353 | Limks to David Wade's photos added |
8 | 2008-09-29 | 1319 | Polyominoes tilings added |
7 | 2008-06-22 | 1190 | Tree search and Conway-Thurston notation |
6 | 2008-05-05 | 1178 | Tilings from Stevens |
5 | 2008-03-31 | 1153 | Islamic tilings from DeGeorge |
4 | 2008-02-23 | 1130 | Spiral tilings added |
3 | 2007-12-27 | 1106 | Further Islamic tilings added |
2 | 2007-11-05 | 1085 | First version on Internet |
1 | 2007-10-06 | 1076 | Islamic tiling added |
0 | 2007-08-26 | 1050 | Initial system |