Some statistics: Version 54

Webmaster

1  Introduction

This page gives some statistics concerning this release of the tiling system, having 2940 tilings.
Note that the numerical counts in the tables are actually hypertext links which give a single instance of a pattern having that characteristic.
The statistics are presented in the same order as the comprehensive search HTML form.

2  Symmetry group

The symmetry group of the tiling is 3*3 (p31m)37
The symmetry group of the tiling is 2*22 (cmm)295
The symmetry group of the tiling is *632 (p6m)535
The symmetry group of the tiling is *10.0• (d10.0)13
The symmetry group of the tiling is *442 (p4m)1050
The symmetry group of the tiling is *8.0• (d8.0)19
The symmetry group of the tiling is *2222 (pmm)195
The symmetry group of the tiling is *12.0• (d12.0)5
The symmetry group of the tiling is *5.0• (d5.0)13
The symmetry group of the tiling is *6.0• (d6.0)6
The symmetry group of the tiling is *333 (p3m1)21
The symmetry group of the tiling is 6.5• (c6.5)20
The symmetry group of the tiling is *4.0• (d4.0)16
The symmetry group of the tiling is 442 (p4)126
The symmetry group of the tiling is 22X (pgg)17
The symmetry group of the tiling is 4*2 (p4g)145
The symmetry group of the tiling is ** (pm)22
The symmetry group of the tiling is *X (cm)13
The symmetry group of the tiling is 632 (p6)104
The symmetry group of the tiling is 22* (pmg)31
The symmetry group of the tiling is 333 (p3)10
The symmetry group of the tiling is *2.0• (d2.0)14
The symmetry group of the tiling is 4.5• (c4.5)32
The symmetry group of the tiling is 2222 (p2)34
The symmetry group of the tiling is not symmetric and hence is not a repeat pattern85
The symmetry group of the tiling is 2.5• (c2.5)34
The symmetry group of the tiling is 5.5• (c5.5)5
The symmetry group of the tiling is 3.5• (c3.5)3
The symmetry group of the tiling is XX (pg)18
The symmetry group of the tiling is O (p1)7
The symmetry group of the tiling is 7.5• (c7.5)1
The symmetry group of the tiling is 12.5• (c12.5)1
The symmetry group of the tiling is *22∞ (p2mm)6
The symmetry group of the tiling is *3.0• (d3.0)1
The symmetry group of the tiling is *16.0• (d16.0)2
The symmetry group of the tiling is 2*∞ (pmg)3
The symmetry group of the tiling is *1.0• (d1.0)1
Note how unevenly the groups appear. Given a tiling of a `rare' group, it would then be easy to examine each tiling by eye for a match.

3  Two colour property

Property Number
Colouring could not be determined 285
Cannot be coloured with two colours 462
Can be coloured with two colours 864
Can be coloured with two colours (straight cross-overs) 1329
Most of the cases in which the colouring could not be determined is due to the software not being capable enough.

4  Tilings containing regular polygons

Polygon Number of TilingsTotal
equilateral triangle 256 728
square 789 1940
regular pentagon 269 3414
regular hexagon 330 516
regular heptagon 29 97
regular octagon 226 293
regular enneagon 8 8
regular decagon 6 10
12-gon 13 13
16-gon 2 2
18-gon 1 1
24-gon 1 1

5  Tilings containing regular star polygons

Points Vertex angle Tiling count Total
2 (undef) 2 11
2 0.0 2 2
2 15.0 1 1
2 18.0 4 6
2 22.5 4 8
2 25.7 12 30
2 30.0 21 37
2 34.3 1 1
2 36.0 11 23
2 40.0 1 1
2 45.0 201 964
2 48.0 1 1
2 50.0 2 2
2 51.4 4 8
2 52.5 1 2
2 53.1 1 1
2 55.5 1 1
2 58.5 1 1
2 60.0 183 297
2 63.0 2 2
2 66.0 1 1
2 67.5 2 8
2 70.0 2 2
2 70.7 1 7
2 72.0 112 1075
2 73.1 2 16
2 75.0 9 15
2 77.1 10 18
2 78.0 2 2
2 80.0 6 7
2 82.5 1 1
2 84.0 1 1
2 87.4 1 1
2 99.2 1 1
3 15.0 7 8
3 18.0 4 4
3 20.0 3 3
3 22.0 3 4
3 25.7 1 1
3 30.0 27 34
3 34.3 5 6
3 37.5 1 1
3 40.0 3 3
3 45.0 4 4
3 60.0 10 10
3 80.0 1 1
3 90.0 39 67
3 100.0 1 1
3 102.0 1 1
3 105.0 12 12
3 108.0 1 1
3 112.5 3 3
3 120.0 1 1
3 150.0 3 4
3 165.0 1 1
4 0.0 1 1
4 18.0 2 3
4 22.0 2 3
4 24.0 1 1
4 30.0 13 15
4 31.5 1 1
4 36.0 1 1
4 40.0 1 1
4 45.0 82 104
4 48.0 1 1
4 51.4 1 1
4 52.5 1 1
4 54.0 5 5
4 56.3 1 1
4 60.0 42 44
4 63.0 1 1
4 64.3 5 6
4 65.0 1 1
4 67.5 7 7
4 68.0 1 1
4 70.0 2 2
4 75.0 3 3
4 90.0 4 4
4 98.0 1 1
4 120.0 29 32
4 126.0 3 3
4 135.0 10 10
5 (undef) 1 1
5 36.0 69 364
5 48.0 1 1
5 72.0 29 63
5 108.0 2 2
6 (undef) 1 1
6 0.0 2 2
6 15.0 1 1
6 18.0 1 1
6 20.0 1 1
6 22.0 1 3
6 30.0 19 20
6 36.0 1 1
6 40.0 3 3
6 45.0 2 2
6 48.0 4 4
6 60.0 248 282
6 65.0 1 1
6 72.0 7 7
6 73.3 1 1
6 75.0 9 9
6 76.0 1 1
6 77.1 1 1
6 78.0 2 2
6 78.8 1 1
6 80.0 4 4
6 84.0 1 1
6 85.0 3 3
6 90.0 54 64
6 94.3 4 4
6 95.0 1 1
6 100.0 3 3
6 102.9 1 1
6 105.0 3 3
6 108.0 2 2
6 114.0 1 1
6 120.0 16 16
6 135.0 1 1
6 150.0 2 2
7 (undef) 3 4
7 0.0 12 12
7 77.1 12 14
7 92.6 1 2
7 102.9 2 2
8 (undef) 2 2
8 0.0 11 11
8 15.0 9 10
8 18.0 1 1
8 25.0 1 1
8 35.0 1 1
8 45.0 164 240
8 50.0 1 1
8 52.5 1 1
8 55.0 1 1
8 60.0 3 3
8 63.0 1 1
8 65.0 2 2
8 67.5 4 5
8 69.0 1 1
8 70.0 3 3
8 71.3 3 3
8 72.0 6 7
8 73.1 3 3
8 75.0 8 8
8 76.5 1 1
8 80.0 2 2
8 82.0 1 1
8 90.0 592 1576
8 100.0 2 4
8 105.0 9 9
8 108.0 2 2
8 109.3 1 1
8 111.0 1 1
8 112.5 8 8
8 115.0 1 1
8 117.0 1 1
8 120.0 5 5
8 121.5 1 1
8 135.0 3 3
9 0.0 7 7
9 20.0 3 3
9 30.0 1 1
9 32.0 1 1
9 40.0 5 5
9 70.0 3 3
9 72.0 1 1
9 72.5 2 2
9 80.0 14 14
9 92.0 1 1
9 100.0 2 2
9 105.0 1 1
9 110.0 3 3
9 120.0 1 1
10 (undef) 4 2
10 0.0 3 3
10 36.0 6 6
10 54.0 1 1
10 72.0 147 262
10 85.5 1 1
10 90.0 2 2
10 98.0 1 1
10 108.0 98 309
10 126.0 1 1
11 (undef) 1 1
11 0.0 4 4
11 70.0 1 1
12 (undef) 2 2
12 0.0 11 11
12 15.0 1 1
12 30.0 20 20
12 45.0 1 1
12 51.0 1 1
12 52.5 3 3
12 60.0 151 186
12 65.0 3 3
12 66.0 2 2
12 67.5 1 1
12 70.0 5 5
12 71.3 2 2
12 72.0 8 8
12 72.5 2 2
12 75.0 15 15
12 78.0 1 1
12 80.0 8 8
12 82.5 1 1
12 84.0 1 1
12 85.0 1 1
12 90.0 57 58
12 97.5 4 4
12 100.0 2 2
12 105.0 11 11
12 120.0 8 8
12 124.3 1 1
12 127.5 1 1
13 0.0 1 1
13 90.0 1 1
14 0.0 1 1
14 51.4 8 8
14 70.7 3 3
14 77.1 4 4
14 102.9 17 21
15 51.0 2 2
16 0.0 4 4
16 22.5 1 1
16 45.0 87 89
16 52.5 4 4
16 58.5 1 1
16 59.0 1 1
16 60.0 2 2
16 62.5 1 1
16 67.5 4 4
16 73.1 3 3
16 75.0 1 1
16 80.0 2 2
16 90.0 6 6
16 100.0 1 1
18 40.0 2 2
18 44.0 1 1
18 60.0 2 2
18 80.0 4 4
20 (undef) 2 2
20 0.0 1 1
20 36.0 7 7
20 54.0 1 1
20 60.0 1 1
24 (undef) 1 1
24 0.0 5 5
24 30.0 15 15
24 40.0 1 1
24 45.0 3 3
32 0.0 1 1
32 22.5 1 1
48 0.0 4 4

6  The angles of the tiling

Angle Number
- 112
0.38 1
0.50 7
1.00 7
1.07 1
1.25 9
1.50 8
1.67 1
1.88 3
2.00 11
2.14 1
2.50 28
2.81 3
3.00 11
3.21 4
3.75 17
4.00 1
4.29 4
4.50 11
5.00 40
5.63 1
6.00 14
6.43 2
7.50 100
8.57 4
9.00 14
10.00 15
11.25 21
12.00 12
12.86 7
15.00 265
18.00 37
20.00 20
22.50 285
25.71 35
30.00 358
36.00 298
45.00 678
60.00 217
90.00 260
120.00 17

7  Does the pattern satisfy the two polygon condition?

Property Number
False 2725
True 184

8  The interlace condition

Finite interlaces Infinite interlaces Total
-1 0 79
0 0 1520
0 1 238
0 2 175
0 3 45
0 4 25
0 5 5
0 6 5
0 8 3
1 0 138
1 1 163
1 2 60
1 3 8
1 4 1
1 5 3
1 7 1
2 0 135
2 1 73
2 2 16
2 3 9
2 4 2
2 5 1
3 0 72
3 1 23
3 2 5
4 0 25
4 1 18
4 2 10
4 3 2
4 4 1
5 0 17
5 1 11
5 2 2
5 3 1
5 9 1
6 0 10
6 1 7
7 0 9
7 1 2
7 4 1
8 0 6
8 1 1
8 2 2
9 0 3
10 1 1
12 0 1
12 2 1
13 0 1
15 3 2

9  Polygonal tiles used

This excludes the regular polygons and star polygons.
Reflective tilesReflective pairs No mirror image Number
0 0 0 243
0 0 1 156
0 0 2 59
0 0 3 11
0 0 4 2
0 0 5 3
0 0 6 1
0 0 7 2
0 0 8 35
0 0 9 2
0 0 11 2
0 1 0 95
1 0 0 431
1 0 1 23
1 0 2 2
1 0 3 1
1 0 4 3
1 0 6 1
1 1 0 43
1 2 0 2
1 3 0 3
2 0 0 283
2 0 1 5
2 0 2 3
2 0 3 1
2 0 6 1
2 1 0 27
2 1 1 1
2 2 0 4
2 3 0 1
2 4 0 2
2 5 0 2
2 6 0 1
3 0 0 333
3 0 1 2
3 0 2 3
3 0 5 2
3 1 0 29
3 2 0 3
3 3 0 3
3 4 0 1
3 5 0 2
4 0 0 227
4 0 5 3
4 1 0 19
4 2 0 7
4 3 0 2
4 6 0 1
5 0 0 175
5 0 2 3
5 1 0 27
5 2 0 3
5 3 0 2
6 0 0 107
6 0 2 1
6 1 0 28
6 2 0 4
6 4 0 1
7 0 0 92
7 0 2 1
7 1 0 22
7 2 0 3
7 3 0 1
7 4 0 1
8 0 0 59
8 1 0 16
8 2 0 7
8 3 0 3
9 0 0 41
9 0 2 1
9 1 0 14
9 2 0 4
9 5 0 1
10 0 0 34
10 1 0 7
10 2 0 6
10 3 0 1
10 4 0 3
11 0 0 21
11 1 0 9
11 2 0 4
12 0 0 15
12 1 0 9
12 2 0 5
12 2 2 1
12 3 0 1
12 4 0 1
13 0 0 9
13 1 0 4
13 2 0 6
13 3 0 1
13 4 0 1
14 0 0 8
14 1 0 6
14 2 0 7
14 3 2 1
15 0 0 3
15 1 0 7
15 2 0 5
15 4 0 3
16 0 0 5
16 0 22 1
16 1 0 4
16 2 0 3
16 3 0 1
17 0 0 4
17 1 0 1
17 2 0 3
17 3 0 4
18 0 0 4
18 1 0 4
18 3 0 1
18 8 0 1
19 1 0 3
19 2 0 2
20 1 0 1
20 3 0 1
21 1 0 1
21 2 0 1
22 0 13 1
22 3 0 1
22 4 0 1
22 5 0 1
23 0 0 1
23 1 0 1
23 4 0 2
24 7 0 1
26 3 0 1
26 4 0 1
26 5 0 1

10  Edge-to-edge property

Property Number
False 2316
True 615

11  Publications

Publication Number
abas 176
ajlouni 3
akber 17
arik 1
aslanapa 25
backhouse 7
bain 5
bakirer 1
balmelle 185
barry 2
berchem 1
betsch 1
betts 1
blair 3
blair2 1
bonner 239
booth 8
bour0 7
bourgoin 179
briggs 12
broug 14
broug2 59
bulut 24
burckhard2 1
burckhardt 6
cahier 66
calvert 16
calvert2 1
carey 5
castera 47
clevenot 14
collin 38
copple 1
creswell 16
critchlow 24
cromwell1 1
cromwell2 2
cromwell3 1
cromwell4 30
d-avennes 43
dawes 173
day 1
degeorge2 48
denny 2
dury 3
dussaud 1
dye 122
ekhtiar 1
elsaid 49
elsaid2 4
erdmann 14
escher 2
etting 4
ex1995 7
fernandez 16
field1 10
field2 14
field4 26
frettloeh 19
gailiunas 9
gands 114
gands2 2
gink 4
glassner 1
gluck 1
golomb1 29
golomb2 3
golombek 1
gomez 1
grafton 28
grube 1
guy 9
hankin1 2
hankin2 1
hattstein 3
hedgecoe 1
herzfeld1 1
herzfeld2 3
herzfeld3 1
herzfeld4 1
hessemer 55
hill 51
hill2 10
hirsch 2
hrbas 3
humbert 5
hutt 2
iran 172
james 4
jones 50
jones2 2
klaassen 1
klarner 3
knobloch 1
landau 2
lee 14
lings 1
lowry 1
makov 4
marcais 1
marshall 17
martin 1
maussion 1
meinecke 1
migeon 2
mols 1
muller 1
murphy 5
myers 47
myers2 43
neal 7
necipoglu 28
ogel 4
okane 1
okane2 45
orazi 5
orton 1
otto 1
paccard 92
pajares 25
pavon 10
pc 842
pickett 1
pope 23
pope2 1
pugatch 2
racinet 18
ransome 2
ray 13
reid 4
rempel 21
reuther 1
rice 1
riefstahl 1
rigby1 55
rogers 2
sakkal 27
sakkal2 23
sarre 12
scerrato 6
schatt1 2
schneider 1
seherr 17
shafai 72
siculo 1
singer 9
smith1 1
smith2 98
sourdel 3
stevens 23
stierlin 3
stierlin2 1
stock 6
stronge 20
sutton 7
useinov 3
vami 142
viollet 1
volait 7
volwah 2
wade 58
wadei 675
wahhab 36
wich2 122
wich3 2
wilber 4
wild 1
wilkinson 7
williams 1
wilson 12
wurfel 1
ww 179

12  Islamic Tilings

Those tilings which are referenced at least once in books about Islamic art can be counted as Islamic patterns. There are 1672 of these.

13  Photographic links

There are 776 tiling patterns whose records link to a photograph. The total number of links to photographs is 1151.

14  Version records

Version Date TilingsComment
54 2023-10-24 2941See.
53 2023-01-17 2904See.
52 2021-08-15 2862See.
51 2020-11-23 2857See.
50 2020-08-01 2840See.
49 2019-08-01 2811See.
48 2019-03-15 2812See.
47 2018-09-29 2767See.
46 2018-07-22 2717See.
45 2018-05-15 2714See.
44 2017-12-28 2690See.
43 2017-09-10 2670See.
42 2016-09-27 2620See.
41 2016-05-14 2603See.
40 2016-02-01 2566See.
39 2015-11-28 254821 new patterns
38 2015-09-04 2527Negative searching
37 2015-04-20 2517New search facility
36 2014-11-29 2510Interlace counts
35 2014-08-03 2505James William Wild
34 2014-06-06 2429Chelates
33 2014-03-08 2440Variant patterns
32 2013-12-11 2389Kites and Darts
31 2013-10-08 2336More patterns from Iran
30 2013-08-08 2304All patterns have a PDF version
29 2013-05-01 2304Patterns from Nick Crossling added
28 2013-02-19 2278Patterns from Alberto Leon added
27 2012-12-16 2235Patterns in Islamic style added from Tony Lee
26 2012-10-16 2201More Roman mosaic patterns added
25 2012-08-21 2151Roman mosaic patterns added
24 2012-05-28 2020More paterns from the Alhambra added
23 2012-02-11 1983More pattern added from David Wade's photos
22 2011-12-17 1941More patterns from Borgoin added
21 2011-09-19 1908Patterns with borders added
20 2011-06-21 1868Example of internal documentation provided
19 2011-02-28 182925 patterns from Tony Lee
18 2010-11-15 1771More paterns from the Alhambra added
17 2010-08-14 1727Large JPG display added for some patterns
16 2010-05-07 1695Some V and A material added
15 2010-01-29 1646Entry page display added
14 2009-12-09 1601Tilings of a square with similar triangles added
13 2009-10-09 1563Two-uniform tilings added
12 2009-06-20 1499Patterns from Borgoin added
11 2009-03-05 1442Patterns on the Alhambra added
10 2009-01-03 1403Random display of 20 patterns added
9 2008-11-16 1353Limks to David Wade's photos added
8 2008-09-29 1319Polyominoes tilings added
7 2008-06-22 1190Tree search and Conway-Thurston notation
6 2008-05-05 1178Tilings from Stevens
5 2008-03-31 1153Islamic tilings from DeGeorge
4 2008-02-23 1130Spiral tilings added
3 2007-12-27 1106Further Islamic tilings added
2 2007-11-05 1085First version on Internet
1 2007-10-06 1076Islamic tiling added
0 2007-08-26 1050Initial system