| The symmetry group of the tiling is 3*3 (p31m) | 37 |
| The symmetry group of the tiling is 2*22 (cmm) | 295 |
| The symmetry group of the tiling is *632 (p6m) | 535 |
| The symmetry group of the tiling is *10.0• (d10.0) | 13 |
| The symmetry group of the tiling is *442 (p4m) | 1050 |
| The symmetry group of the tiling is *8.0• (d8.0) | 19 |
| The symmetry group of the tiling is *2222 (pmm) | 195 |
| The symmetry group of the tiling is *12.0• (d12.0) | 5 |
| The symmetry group of the tiling is *5.0• (d5.0) | 13 |
| The symmetry group of the tiling is *6.0• (d6.0) | 6 |
| The symmetry group of the tiling is *333 (p3m1) | 21 |
| The symmetry group of the tiling is 6.5• (c6.5) | 20 |
| The symmetry group of the tiling is *4.0• (d4.0) | 16 |
| The symmetry group of the tiling is 442 (p4) | 126 |
| The symmetry group of the tiling is 22X (pgg) | 17 |
| The symmetry group of the tiling is 4*2 (p4g) | 145 |
| The symmetry group of the tiling is ** (pm) | 22 |
| The symmetry group of the tiling is *X (cm) | 13 |
| The symmetry group of the tiling is 632 (p6) | 104 |
| The symmetry group of the tiling is 22* (pmg) | 31 |
| The symmetry group of the tiling is 333 (p3) | 10 |
| The symmetry group of the tiling is *2.0• (d2.0) | 14 |
| The symmetry group of the tiling is 4.5• (c4.5) | 32 |
| The symmetry group of the tiling is 2222 (p2) | 34 |
| The symmetry group of the tiling is not symmetric and hence is not a repeat pattern | 85 |
| The symmetry group of the tiling is 2.5• (c2.5) | 34 |
| The symmetry group of the tiling is 5.5• (c5.5) | 5 |
| The symmetry group of the tiling is 3.5• (c3.5) | 3 |
| The symmetry group of the tiling is XX (pg) | 18 |
| The symmetry group of the tiling is O (p1) | 7 |
| The symmetry group of the tiling is 7.5• (c7.5) | 1 |
| The symmetry group of the tiling is 12.5• (c12.5) | 1 |
| The symmetry group of the tiling is *22∞ (p2mm) | 6 |
| The symmetry group of the tiling is *3.0• (d3.0) | 1 |
| The symmetry group of the tiling is *16.0• (d16.0) | 2 |
| The symmetry group of the tiling is 2*∞ (pmg) | 3 |
| The symmetry group of the tiling is *1.0• (d1.0) | 1 |
| Property | Number |
| Colouring could not be determined | 285 |
| Cannot be coloured with two colours | 462 |
| Can be coloured with two colours | 864 |
| Can be coloured with two colours (straight cross-overs) | 1329 |
| Polygon | Number of Tilings | Total |
| equilateral triangle | 256 | 728 |
| square | 789 | 1940 |
| regular pentagon | 269 | 3414 |
| regular hexagon | 330 | 516 |
| regular heptagon | 29 | 97 |
| regular octagon | 226 | 293 |
| regular enneagon | 8 | 8 |
| regular decagon | 6 | 10 |
| 12-gon | 13 | 13 |
| 16-gon | 2 | 2 |
| 18-gon | 1 | 1 |
| 24-gon | 1 | 1 |
| Points | Vertex angle | Tiling count | Total |
| 2 | (undef) | 2 | 11 |
| 2 | 0.0 | 2 | 2 |
| 2 | 15.0 | 1 | 1 |
| 2 | 18.0 | 4 | 6 |
| 2 | 22.5 | 4 | 8 |
| 2 | 25.7 | 12 | 30 |
| 2 | 30.0 | 21 | 37 |
| 2 | 34.3 | 1 | 1 |
| 2 | 36.0 | 11 | 23 |
| 2 | 40.0 | 1 | 1 |
| 2 | 45.0 | 201 | 964 |
| 2 | 48.0 | 1 | 1 |
| 2 | 50.0 | 2 | 2 |
| 2 | 51.4 | 4 | 8 |
| 2 | 52.5 | 1 | 2 |
| 2 | 53.1 | 1 | 1 |
| 2 | 55.5 | 1 | 1 |
| 2 | 58.5 | 1 | 1 |
| 2 | 60.0 | 183 | 297 |
| 2 | 63.0 | 2 | 2 |
| 2 | 66.0 | 1 | 1 |
| 2 | 67.5 | 2 | 8 |
| 2 | 70.0 | 2 | 2 |
| 2 | 70.7 | 1 | 7 |
| 2 | 72.0 | 112 | 1075 |
| 2 | 73.1 | 2 | 16 |
| 2 | 75.0 | 9 | 15 |
| 2 | 77.1 | 10 | 18 |
| 2 | 78.0 | 2 | 2 |
| 2 | 80.0 | 6 | 7 |
| 2 | 82.5 | 1 | 1 |
| 2 | 84.0 | 1 | 1 |
| 2 | 87.4 | 1 | 1 |
| 2 | 99.2 | 1 | 1 |
| 3 | 15.0 | 7 | 8 |
| 3 | 18.0 | 4 | 4 |
| 3 | 20.0 | 3 | 3 |
| 3 | 22.0 | 3 | 4 |
| 3 | 25.7 | 1 | 1 |
| 3 | 30.0 | 27 | 34 |
| 3 | 34.3 | 5 | 6 |
| 3 | 37.5 | 1 | 1 |
| 3 | 40.0 | 3 | 3 |
| 3 | 45.0 | 4 | 4 |
| 3 | 60.0 | 10 | 10 |
| 3 | 80.0 | 1 | 1 |
| 3 | 90.0 | 39 | 67 |
| 3 | 100.0 | 1 | 1 |
| 3 | 102.0 | 1 | 1 |
| 3 | 105.0 | 12 | 12 |
| 3 | 108.0 | 1 | 1 |
| 3 | 112.5 | 3 | 3 |
| 3 | 120.0 | 1 | 1 |
| 3 | 150.0 | 3 | 4 |
| 3 | 165.0 | 1 | 1 |
| 4 | 0.0 | 1 | 1 |
| 4 | 18.0 | 2 | 3 |
| 4 | 22.0 | 2 | 3 |
| 4 | 24.0 | 1 | 1 |
| 4 | 30.0 | 13 | 15 |
| 4 | 31.5 | 1 | 1 |
| 4 | 36.0 | 1 | 1 |
| 4 | 40.0 | 1 | 1 |
| 4 | 45.0 | 82 | 104 |
| 4 | 48.0 | 1 | 1 |
| 4 | 51.4 | 1 | 1 |
| 4 | 52.5 | 1 | 1 |
| 4 | 54.0 | 5 | 5 |
| 4 | 56.3 | 1 | 1 |
| 4 | 60.0 | 42 | 44 |
| 4 | 63.0 | 1 | 1 |
| 4 | 64.3 | 5 | 6 |
| 4 | 65.0 | 1 | 1 |
| 4 | 67.5 | 7 | 7 |
| 4 | 68.0 | 1 | 1 |
| 4 | 70.0 | 2 | 2 |
| 4 | 75.0 | 3 | 3 |
| 4 | 90.0 | 4 | 4 |
| 4 | 98.0 | 1 | 1 |
| 4 | 120.0 | 29 | 32 |
| 4 | 126.0 | 3 | 3 |
| 4 | 135.0 | 10 | 10 |
| 5 | (undef) | 1 | 1 |
| 5 | 36.0 | 69 | 364 |
| 5 | 48.0 | 1 | 1 |
| 5 | 72.0 | 29 | 63 |
| 5 | 108.0 | 2 | 2 |
| 6 | (undef) | 1 | 1 |
| 6 | 0.0 | 2 | 2 |
| 6 | 15.0 | 1 | 1 |
| 6 | 18.0 | 1 | 1 |
| 6 | 20.0 | 1 | 1 |
| 6 | 22.0 | 1 | 3 |
| 6 | 30.0 | 19 | 20 |
| 6 | 36.0 | 1 | 1 |
| 6 | 40.0 | 3 | 3 |
| 6 | 45.0 | 2 | 2 |
| 6 | 48.0 | 4 | 4 |
| 6 | 60.0 | 248 | 282 |
| 6 | 65.0 | 1 | 1 |
| 6 | 72.0 | 7 | 7 |
| 6 | 73.3 | 1 | 1 |
| 6 | 75.0 | 9 | 9 |
| 6 | 76.0 | 1 | 1 |
| 6 | 77.1 | 1 | 1 |
| 6 | 78.0 | 2 | 2 |
| 6 | 78.8 | 1 | 1 |
| 6 | 80.0 | 4 | 4 |
| 6 | 84.0 | 1 | 1 |
| 6 | 85.0 | 3 | 3 |
| 6 | 90.0 | 54 | 64 |
| 6 | 94.3 | 4 | 4 |
| 6 | 95.0 | 1 | 1 |
| 6 | 100.0 | 3 | 3 |
| 6 | 102.9 | 1 | 1 |
| 6 | 105.0 | 3 | 3 |
| 6 | 108.0 | 2 | 2 |
| 6 | 114.0 | 1 | 1 |
| 6 | 120.0 | 16 | 16 |
| 6 | 135.0 | 1 | 1 |
| 6 | 150.0 | 2 | 2 |
| 7 | (undef) | 3 | 4 |
| 7 | 0.0 | 12 | 12 |
| 7 | 77.1 | 12 | 14 |
| 7 | 92.6 | 1 | 2 |
| 7 | 102.9 | 2 | 2 |
| 8 | (undef) | 2 | 2 |
| 8 | 0.0 | 11 | 11 |
| 8 | 15.0 | 9 | 10 |
| 8 | 18.0 | 1 | 1 |
| 8 | 25.0 | 1 | 1 |
| 8 | 35.0 | 1 | 1 |
| 8 | 45.0 | 164 | 240 |
| 8 | 50.0 | 1 | 1 |
| 8 | 52.5 | 1 | 1 |
| 8 | 55.0 | 1 | 1 |
| 8 | 60.0 | 3 | 3 |
| 8 | 63.0 | 1 | 1 |
| 8 | 65.0 | 2 | 2 |
| 8 | 67.5 | 4 | 5 |
| 8 | 69.0 | 1 | 1 |
| 8 | 70.0 | 3 | 3 |
| 8 | 71.3 | 3 | 3 |
| 8 | 72.0 | 6 | 7 |
| 8 | 73.1 | 3 | 3 |
| 8 | 75.0 | 8 | 8 |
| 8 | 76.5 | 1 | 1 |
| 8 | 80.0 | 2 | 2 |
| 8 | 82.0 | 1 | 1 |
| 8 | 90.0 | 592 | 1576 |
| 8 | 100.0 | 2 | 4 |
| 8 | 105.0 | 9 | 9 |
| 8 | 108.0 | 2 | 2 |
| 8 | 109.3 | 1 | 1 |
| 8 | 111.0 | 1 | 1 |
| 8 | 112.5 | 8 | 8 |
| 8 | 115.0 | 1 | 1 |
| 8 | 117.0 | 1 | 1 |
| 8 | 120.0 | 5 | 5 |
| 8 | 121.5 | 1 | 1 |
| 8 | 135.0 | 3 | 3 |
| 9 | 0.0 | 7 | 7 |
| 9 | 20.0 | 3 | 3 |
| 9 | 30.0 | 1 | 1 |
| 9 | 32.0 | 1 | 1 |
| 9 | 40.0 | 5 | 5 |
| 9 | 70.0 | 3 | 3 |
| 9 | 72.0 | 1 | 1 |
| 9 | 72.5 | 2 | 2 |
| 9 | 80.0 | 14 | 14 |
| 9 | 92.0 | 1 | 1 |
| 9 | 100.0 | 2 | 2 |
| 9 | 105.0 | 1 | 1 |
| 9 | 110.0 | 3 | 3 |
| 9 | 120.0 | 1 | 1 |
| 10 | (undef) | 4 | 2 |
| 10 | 0.0 | 3 | 3 |
| 10 | 36.0 | 6 | 6 |
| 10 | 54.0 | 1 | 1 |
| 10 | 72.0 | 147 | 262 |
| 10 | 85.5 | 1 | 1 |
| 10 | 90.0 | 2 | 2 |
| 10 | 98.0 | 1 | 1 |
| 10 | 108.0 | 98 | 309 |
| 10 | 126.0 | 1 | 1 |
| 11 | (undef) | 1 | 1 |
| 11 | 0.0 | 4 | 4 |
| 11 | 70.0 | 1 | 1 |
| 12 | (undef) | 2 | 2 |
| 12 | 0.0 | 11 | 11 |
| 12 | 15.0 | 1 | 1 |
| 12 | 30.0 | 20 | 20 |
| 12 | 45.0 | 1 | 1 |
| 12 | 51.0 | 1 | 1 |
| 12 | 52.5 | 3 | 3 |
| 12 | 60.0 | 151 | 186 |
| 12 | 65.0 | 3 | 3 |
| 12 | 66.0 | 2 | 2 |
| 12 | 67.5 | 1 | 1 |
| 12 | 70.0 | 5 | 5 |
| 12 | 71.3 | 2 | 2 |
| 12 | 72.0 | 8 | 8 |
| 12 | 72.5 | 2 | 2 |
| 12 | 75.0 | 15 | 15 |
| 12 | 78.0 | 1 | 1 |
| 12 | 80.0 | 8 | 8 |
| 12 | 82.5 | 1 | 1 |
| 12 | 84.0 | 1 | 1 |
| 12 | 85.0 | 1 | 1 |
| 12 | 90.0 | 57 | 58 |
| 12 | 97.5 | 4 | 4 |
| 12 | 100.0 | 2 | 2 |
| 12 | 105.0 | 11 | 11 |
| 12 | 120.0 | 8 | 8 |
| 12 | 124.3 | 1 | 1 |
| 12 | 127.5 | 1 | 1 |
| 13 | 0.0 | 1 | 1 |
| 13 | 90.0 | 1 | 1 |
| 14 | 0.0 | 1 | 1 |
| 14 | 51.4 | 8 | 8 |
| 14 | 70.7 | 3 | 3 |
| 14 | 77.1 | 4 | 4 |
| 14 | 102.9 | 17 | 21 |
| 15 | 51.0 | 2 | 2 |
| 16 | 0.0 | 4 | 4 |
| 16 | 22.5 | 1 | 1 |
| 16 | 45.0 | 87 | 89 |
| 16 | 52.5 | 4 | 4 |
| 16 | 58.5 | 1 | 1 |
| 16 | 59.0 | 1 | 1 |
| 16 | 60.0 | 2 | 2 |
| 16 | 62.5 | 1 | 1 |
| 16 | 67.5 | 4 | 4 |
| 16 | 73.1 | 3 | 3 |
| 16 | 75.0 | 1 | 1 |
| 16 | 80.0 | 2 | 2 |
| 16 | 90.0 | 6 | 6 |
| 16 | 100.0 | 1 | 1 |
| 18 | 40.0 | 2 | 2 |
| 18 | 44.0 | 1 | 1 |
| 18 | 60.0 | 2 | 2 |
| 18 | 80.0 | 4 | 4 |
| 20 | (undef) | 2 | 2 |
| 20 | 0.0 | 1 | 1 |
| 20 | 36.0 | 7 | 7 |
| 20 | 54.0 | 1 | 1 |
| 20 | 60.0 | 1 | 1 |
| 24 | (undef) | 1 | 1 |
| 24 | 0.0 | 5 | 5 |
| 24 | 30.0 | 15 | 15 |
| 24 | 40.0 | 1 | 1 |
| 24 | 45.0 | 3 | 3 |
| 32 | 0.0 | 1 | 1 |
| 32 | 22.5 | 1 | 1 |
| 48 | 0.0 | 4 | 4 |
| Angle | Number |
| - | 112 |
| 0.38 | 1 |
| 0.50 | 7 |
| 1.00 | 7 |
| 1.07 | 1 |
| 1.25 | 9 |
| 1.50 | 8 |
| 1.67 | 1 |
| 1.88 | 3 |
| 2.00 | 11 |
| 2.14 | 1 |
| 2.50 | 28 |
| 2.81 | 3 |
| 3.00 | 11 |
| 3.21 | 4 |
| 3.75 | 17 |
| 4.00 | 1 |
| 4.29 | 4 |
| 4.50 | 11 |
| 5.00 | 40 |
| 5.63 | 1 |
| 6.00 | 14 |
| 6.43 | 2 |
| 7.50 | 100 |
| 8.57 | 4 |
| 9.00 | 14 |
| 10.00 | 15 |
| 11.25 | 21 |
| 12.00 | 12 |
| 12.86 | 7 |
| 15.00 | 265 |
| 18.00 | 37 |
| 20.00 | 20 |
| 22.50 | 285 |
| 25.71 | 35 |
| 30.00 | 358 |
| 36.00 | 298 |
| 45.00 | 678 |
| 60.00 | 217 |
| 90.00 | 260 |
| 120.00 | 17 |
| Property | Number |
| False | 2725 |
| True | 184 |
| Finite interlaces | Infinite interlaces | Total |
| -1 | 0 | 79 |
| 0 | 0 | 1520 |
| 0 | 1 | 238 |
| 0 | 2 | 175 |
| 0 | 3 | 45 |
| 0 | 4 | 25 |
| 0 | 5 | 5 |
| 0 | 6 | 5 |
| 0 | 8 | 3 |
| 1 | 0 | 138 |
| 1 | 1 | 163 |
| 1 | 2 | 60 |
| 1 | 3 | 8 |
| 1 | 4 | 1 |
| 1 | 5 | 3 |
| 1 | 7 | 1 |
| 2 | 0 | 135 |
| 2 | 1 | 73 |
| 2 | 2 | 16 |
| 2 | 3 | 9 |
| 2 | 4 | 2 |
| 2 | 5 | 1 |
| 3 | 0 | 72 |
| 3 | 1 | 23 |
| 3 | 2 | 5 |
| 4 | 0 | 25 |
| 4 | 1 | 18 |
| 4 | 2 | 10 |
| 4 | 3 | 2 |
| 4 | 4 | 1 |
| 5 | 0 | 17 |
| 5 | 1 | 11 |
| 5 | 2 | 2 |
| 5 | 3 | 1 |
| 5 | 9 | 1 |
| 6 | 0 | 10 |
| 6 | 1 | 7 |
| 7 | 0 | 9 |
| 7 | 1 | 2 |
| 7 | 4 | 1 |
| 8 | 0 | 6 |
| 8 | 1 | 1 |
| 8 | 2 | 2 |
| 9 | 0 | 3 |
| 10 | 1 | 1 |
| 12 | 0 | 1 |
| 12 | 2 | 1 |
| 13 | 0 | 1 |
| 15 | 3 | 2 |
| Reflective tiles | Reflective pairs | No mirror image | Number |
| 0 | 0 | 0 | 243 |
| 0 | 0 | 1 | 156 |
| 0 | 0 | 2 | 59 |
| 0 | 0 | 3 | 11 |
| 0 | 0 | 4 | 2 |
| 0 | 0 | 5 | 3 |
| 0 | 0 | 6 | 1 |
| 0 | 0 | 7 | 2 |
| 0 | 0 | 8 | 35 |
| 0 | 0 | 9 | 2 |
| 0 | 0 | 11 | 2 |
| 0 | 1 | 0 | 95 |
| 1 | 0 | 0 | 431 |
| 1 | 0 | 1 | 23 |
| 1 | 0 | 2 | 2 |
| 1 | 0 | 3 | 1 |
| 1 | 0 | 4 | 3 |
| 1 | 0 | 6 | 1 |
| 1 | 1 | 0 | 43 |
| 1 | 2 | 0 | 2 |
| 1 | 3 | 0 | 3 |
| 2 | 0 | 0 | 283 |
| 2 | 0 | 1 | 5 |
| 2 | 0 | 2 | 3 |
| 2 | 0 | 3 | 1 |
| 2 | 0 | 6 | 1 |
| 2 | 1 | 0 | 27 |
| 2 | 1 | 1 | 1 |
| 2 | 2 | 0 | 4 |
| 2 | 3 | 0 | 1 |
| 2 | 4 | 0 | 2 |
| 2 | 5 | 0 | 2 |
| 2 | 6 | 0 | 1 |
| 3 | 0 | 0 | 333 |
| 3 | 0 | 1 | 2 |
| 3 | 0 | 2 | 3 |
| 3 | 0 | 5 | 2 |
| 3 | 1 | 0 | 29 |
| 3 | 2 | 0 | 3 |
| 3 | 3 | 0 | 3 |
| 3 | 4 | 0 | 1 |
| 3 | 5 | 0 | 2 |
| 4 | 0 | 0 | 227 |
| 4 | 0 | 5 | 3 |
| 4 | 1 | 0 | 19 |
| 4 | 2 | 0 | 7 |
| 4 | 3 | 0 | 2 |
| 4 | 6 | 0 | 1 |
| 5 | 0 | 0 | 175 |
| 5 | 0 | 2 | 3 |
| 5 | 1 | 0 | 27 |
| 5 | 2 | 0 | 3 |
| 5 | 3 | 0 | 2 |
| 6 | 0 | 0 | 107 |
| 6 | 0 | 2 | 1 |
| 6 | 1 | 0 | 28 |
| 6 | 2 | 0 | 4 |
| 6 | 4 | 0 | 1 |
| 7 | 0 | 0 | 92 |
| 7 | 0 | 2 | 1 |
| 7 | 1 | 0 | 22 |
| 7 | 2 | 0 | 3 |
| 7 | 3 | 0 | 1 |
| 7 | 4 | 0 | 1 |
| 8 | 0 | 0 | 59 |
| 8 | 1 | 0 | 16 |
| 8 | 2 | 0 | 7 |
| 8 | 3 | 0 | 3 |
| 9 | 0 | 0 | 41 |
| 9 | 0 | 2 | 1 |
| 9 | 1 | 0 | 14 |
| 9 | 2 | 0 | 4 |
| 9 | 5 | 0 | 1 |
| 10 | 0 | 0 | 34 |
| 10 | 1 | 0 | 7 |
| 10 | 2 | 0 | 6 |
| 10 | 3 | 0 | 1 |
| 10 | 4 | 0 | 3 |
| 11 | 0 | 0 | 21 |
| 11 | 1 | 0 | 9 |
| 11 | 2 | 0 | 4 |
| 12 | 0 | 0 | 15 |
| 12 | 1 | 0 | 9 |
| 12 | 2 | 0 | 5 |
| 12 | 2 | 2 | 1 |
| 12 | 3 | 0 | 1 |
| 12 | 4 | 0 | 1 |
| 13 | 0 | 0 | 9 |
| 13 | 1 | 0 | 4 |
| 13 | 2 | 0 | 6 |
| 13 | 3 | 0 | 1 |
| 13 | 4 | 0 | 1 |
| 14 | 0 | 0 | 8 |
| 14 | 1 | 0 | 6 |
| 14 | 2 | 0 | 7 |
| 14 | 3 | 2 | 1 |
| 15 | 0 | 0 | 3 |
| 15 | 1 | 0 | 7 |
| 15 | 2 | 0 | 5 |
| 15 | 4 | 0 | 3 |
| 16 | 0 | 0 | 5 |
| 16 | 0 | 22 | 1 |
| 16 | 1 | 0 | 4 |
| 16 | 2 | 0 | 3 |
| 16 | 3 | 0 | 1 |
| 17 | 0 | 0 | 4 |
| 17 | 1 | 0 | 1 |
| 17 | 2 | 0 | 3 |
| 17 | 3 | 0 | 4 |
| 18 | 0 | 0 | 4 |
| 18 | 1 | 0 | 4 |
| 18 | 3 | 0 | 1 |
| 18 | 8 | 0 | 1 |
| 19 | 1 | 0 | 3 |
| 19 | 2 | 0 | 2 |
| 20 | 1 | 0 | 1 |
| 20 | 3 | 0 | 1 |
| 21 | 1 | 0 | 1 |
| 21 | 2 | 0 | 1 |
| 22 | 0 | 13 | 1 |
| 22 | 3 | 0 | 1 |
| 22 | 4 | 0 | 1 |
| 22 | 5 | 0 | 1 |
| 23 | 0 | 0 | 1 |
| 23 | 1 | 0 | 1 |
| 23 | 4 | 0 | 2 |
| 24 | 7 | 0 | 1 |
| 26 | 3 | 0 | 1 |
| 26 | 4 | 0 | 1 |
| 26 | 5 | 0 | 1 |
| Property | Number |
| False | 2316 |
| True | 615 |
| Publication | Number |
| abas | 176 |
| ajlouni | 3 |
| akber | 17 |
| arik | 1 |
| aslanapa | 25 |
| backhouse | 7 |
| bain | 5 |
| bakirer | 1 |
| balmelle | 185 |
| barry | 2 |
| berchem | 1 |
| betsch | 1 |
| betts | 1 |
| blair | 3 |
| blair2 | 1 |
| bonner | 239 |
| booth | 8 |
| bour0 | 7 |
| bourgoin | 179 |
| briggs | 12 |
| broug | 14 |
| broug2 | 59 |
| bulut | 24 |
| burckhard2 | 1 |
| burckhardt | 6 |
| cahier | 66 |
| calvert | 16 |
| calvert2 | 1 |
| carey | 5 |
| castera | 47 |
| clevenot | 14 |
| collin | 38 |
| copple | 1 |
| creswell | 16 |
| critchlow | 24 |
| cromwell1 | 1 |
| cromwell2 | 2 |
| cromwell3 | 1 |
| cromwell4 | 30 |
| d-avennes | 43 |
| dawes | 173 |
| day | 1 |
| degeorge2 | 48 |
| denny | 2 |
| dury | 3 |
| dussaud | 1 |
| dye | 122 |
| ekhtiar | 1 |
| elsaid | 49 |
| elsaid2 | 4 |
| erdmann | 14 |
| escher | 2 |
| etting | 4 |
| ex1995 | 7 |
| fernandez | 16 |
| field1 | 10 |
| field2 | 14 |
| field4 | 26 |
| frettloeh | 19 |
| gailiunas | 9 |
| gands | 114 |
| gands2 | 2 |
| gink | 4 |
| glassner | 1 |
| gluck | 1 |
| golomb1 | 29 |
| golomb2 | 3 |
| golombek | 1 |
| gomez | 1 |
| grafton | 28 |
| grube | 1 |
| guy | 9 |
| hankin1 | 2 |
| hankin2 | 1 |
| hattstein | 3 |
| hedgecoe | 1 |
| herzfeld1 | 1 |
| herzfeld2 | 3 |
| herzfeld3 | 1 |
| herzfeld4 | 1 |
| hessemer | 55 |
| hill | 51 |
| hill2 | 10 |
| hirsch | 2 |
| hrbas | 3 |
| humbert | 5 |
| hutt | 2 |
| iran | 172 |
| james | 4 |
| jones | 50 |
| jones2 | 2 |
| klaassen | 1 |
| klarner | 3 |
| knobloch | 1 |
| landau | 2 |
| lee | 14 |
| lings | 1 |
| lowry | 1 |
| makov | 4 |
| marcais | 1 |
| marshall | 17 |
| martin | 1 |
| maussion | 1 |
| meinecke | 1 |
| migeon | 2 |
| mols | 1 |
| muller | 1 |
| murphy | 5 |
| myers | 47 |
| myers2 | 43 |
| neal | 7 |
| necipoglu | 28 |
| ogel | 4 |
| okane | 1 |
| okane2 | 45 |
| orazi | 5 |
| orton | 1 |
| otto | 1 |
| paccard | 92 |
| pajares | 25 |
| pavon | 10 |
| pc | 842 |
| pickett | 1 |
| pope | 23 |
| pope2 | 1 |
| pugatch | 2 |
| racinet | 18 |
| ransome | 2 |
| ray | 13 |
| reid | 4 |
| rempel | 21 |
| reuther | 1 |
| rice | 1 |
| riefstahl | 1 |
| rigby1 | 55 |
| rogers | 2 |
| sakkal | 27 |
| sakkal2 | 23 |
| sarre | 12 |
| scerrato | 6 |
| schatt1 | 2 |
| schneider | 1 |
| seherr | 17 |
| shafai | 72 |
| siculo | 1 |
| singer | 9 |
| smith1 | 1 |
| smith2 | 98 |
| sourdel | 3 |
| stevens | 23 |
| stierlin | 3 |
| stierlin2 | 1 |
| stock | 6 |
| stronge | 20 |
| sutton | 7 |
| useinov | 3 |
| vami | 142 |
| viollet | 1 |
| volait | 7 |
| volwah | 2 |
| wade | 58 |
| wadei | 675 |
| wahhab | 36 |
| wich2 | 122 |
| wich3 | 2 |
| wilber | 4 |
| wild | 1 |
| wilkinson | 7 |
| williams | 1 |
| wilson | 12 |
| wurfel | 1 |
| ww | 179 |
| Version | Date | Tilings | Comment |
| 54 | 2023-10-24 | 2941 | See. |
| 53 | 2023-01-17 | 2904 | See. |
| 52 | 2021-08-15 | 2862 | See. |
| 51 | 2020-11-23 | 2857 | See. |
| 50 | 2020-08-01 | 2840 | See. |
| 49 | 2019-08-01 | 2811 | See. |
| 48 | 2019-03-15 | 2812 | See. |
| 47 | 2018-09-29 | 2767 | See. |
| 46 | 2018-07-22 | 2717 | See. |
| 45 | 2018-05-15 | 2714 | See. |
| 44 | 2017-12-28 | 2690 | See. |
| 43 | 2017-09-10 | 2670 | See. |
| 42 | 2016-09-27 | 2620 | See. |
| 41 | 2016-05-14 | 2603 | See. |
| 40 | 2016-02-01 | 2566 | See. |
| 39 | 2015-11-28 | 2548 | 21 new patterns |
| 38 | 2015-09-04 | 2527 | Negative searching |
| 37 | 2015-04-20 | 2517 | New search facility |
| 36 | 2014-11-29 | 2510 | Interlace counts |
| 35 | 2014-08-03 | 2505 | James William Wild |
| 34 | 2014-06-06 | 2429 | Chelates |
| 33 | 2014-03-08 | 2440 | Variant patterns |
| 32 | 2013-12-11 | 2389 | Kites and Darts |
| 31 | 2013-10-08 | 2336 | More patterns from Iran |
| 30 | 2013-08-08 | 2304 | All patterns have a PDF version |
| 29 | 2013-05-01 | 2304 | Patterns from Nick Crossling added |
| 28 | 2013-02-19 | 2278 | Patterns from Alberto Leon added |
| 27 | 2012-12-16 | 2235 | Patterns in Islamic style added from Tony Lee |
| 26 | 2012-10-16 | 2201 | More Roman mosaic patterns added |
| 25 | 2012-08-21 | 2151 | Roman mosaic patterns added |
| 24 | 2012-05-28 | 2020 | More paterns from the Alhambra added |
| 23 | 2012-02-11 | 1983 | More pattern added from David Wade's photos |
| 22 | 2011-12-17 | 1941 | More patterns from Borgoin added |
| 21 | 2011-09-19 | 1908 | Patterns with borders added |
| 20 | 2011-06-21 | 1868 | Example of internal documentation provided |
| 19 | 2011-02-28 | 1829 | 25 patterns from Tony Lee |
| 18 | 2010-11-15 | 1771 | More paterns from the Alhambra added |
| 17 | 2010-08-14 | 1727 | Large JPG display added for some patterns |
| 16 | 2010-05-07 | 1695 | Some V and A material added |
| 15 | 2010-01-29 | 1646 | Entry page display added |
| 14 | 2009-12-09 | 1601 | Tilings of a square with similar triangles added |
| 13 | 2009-10-09 | 1563 | Two-uniform tilings added |
| 12 | 2009-06-20 | 1499 | Patterns from Borgoin added |
| 11 | 2009-03-05 | 1442 | Patterns on the Alhambra added |
| 10 | 2009-01-03 | 1403 | Random display of 20 patterns added |
| 9 | 2008-11-16 | 1353 | Limks to David Wade's photos added |
| 8 | 2008-09-29 | 1319 | Polyominoes tilings added |
| 7 | 2008-06-22 | 1190 | Tree search and Conway-Thurston notation |
| 6 | 2008-05-05 | 1178 | Tilings from Stevens |
| 5 | 2008-03-31 | 1153 | Islamic tilings from DeGeorge |
| 4 | 2008-02-23 | 1130 | Spiral tilings added |
| 3 | 2007-12-27 | 1106 | Further Islamic tilings added |
| 2 | 2007-11-05 | 1085 | First version on Internet |
| 1 | 2007-10-06 | 1076 | Islamic tiling added |
| 0 | 2007-08-26 | 1050 | Initial system |